HOMEWORK 1

ECE 580, 2022

Solutions

1. Find the $A B C D$ parameters of the symmetrical lattice shown.

Easy way: go through z parameters. By inspection,
$Z_{11}=Z_{22}=\left(Z_{a}+Z_{b}\right) / 2$
$Z_{12}=Z_{21}=\left(Z_{b}-Z_{a}\right) / 2$
From the Table on p. 42,
$A=D=Z_{11} / Z_{12}=\left(Z_{a}+Z_{b}\right) /\left(Z_{b}-Z_{a}\right)$
$B=|Z| / Z_{12}=2 Z_{a} Z_{b} /\left(Z_{b}-Z_{a}\right)$
$C=1 / Z_{12}=2 /\left(Z_{b}-Z_{a}\right)$
As a check, $A . D-B . C=1$. Reciprocal two-port!
2. The two two-ports shown below are equivalent. Find the element values of the ladder circuit.

Using the equations of Problem 1,
$Z_{11}=Z_{22}=\left(Z_{a}+Z_{b}\right) / 2=\left(2 s^{2}+1\right) /\left(2 s^{3}+2 s\right)$
$Z_{12}=Z_{21}=\left(Z_{b}-Z_{a}\right) / 2=1 /\left(2 s^{3}+2 s\right)$
For the ladder,
$Z_{11}=\left(L C_{2} s^{2}+1\right) /\left[L C_{1} C_{2} s^{3}+\left(C_{1}+C_{2}\right) s\right]$
Equating coefficients of powers of s gives
$C_{1}=C_{2}=1$
$L=2$.

